In the DCN architecture, spine nodes connect various network devices to the VXLAN network.
In Huawei's Data Center Network (DCN) architecture, particularly with the CloudFabric solution, the spine-leaf topology is a common design for scalable and efficient data centers. VXLAN (Virtual Extensible LAN) is used to create overlay networks, enabling large-scale multi-tenancy and flexible workload placement.
Spine Nodes' Role: In this architecture, spine nodes act as the backbone, interconnecting leaf nodes (which connect to servers, storage, or other endpoints) and facilitating high-speed, non-blocking communication. Spine nodes typically handle Layer 3 routing and serve as VXLAN tunnel endpoints (VTEPs) or connect to devices that do, integrating the physical underlay with the VXLAN overlay network.
Connection to VXLAN: Spine nodes ensure that traffic from various network devices (via leaf nodes) is routed efficiently across the VXLAN fabric. They provide the high-bandwidth, low-latency backbone required for east-west traffic in modern data centers, supporting VXLAN encapsulation and decapsulation indirectly or directly depending on the deployment.
Thus, the statement is TRUE (A) because spine nodes play a critical role in connecting the underlay network (various devices via leaf nodes) to the VXLAN overlay, as per Huawei's DCN design principles.
Currently there are no comments in this discussion, be the first to comment!