Deal of The Day! Hurry Up, Grab the Special Discount - Save 25% - Ends In 00:00:00 Coupon code: SAVE25
Welcome to Pass4Success

- Free Preparation Discussions

Databricks Exam Databricks-Machine-Learning-Associate Topic 2 Question 29 Discussion

Actual exam question for Databricks's Databricks-Machine-Learning-Associate exam
Question #: 29
Topic #: 2
[All Databricks-Machine-Learning-Associate Questions]

Which of the following is a benefit of using vectorized pandas UDFs instead of standard PySpark UDFs?

Show Suggested Answer Hide Answer
Suggested Answer: B

Vectorized pandas UDFs, also known as Pandas UDFs, are a powerful feature in PySpark that allows for more efficient operations than standard UDFs. They operate by processing data in batches, utilizing vectorized operations that leverage pandas to perform operations on whole batches of data at once. This approach is much more efficient than processing data row by row as is typical with standard PySpark UDFs, which can significantly speed up the computation.

Reference

PySpark Documentation on UDFs: https://spark.apache.org/docs/latest/api/python/user_guide/sql/arrow_pandas.html#pandas-udfs-a-k-a-vectorized-udfs


Contribute your Thoughts:

Currently there are no comments in this discussion, be the first to comment!


Save Cancel
az-700  pass4success  az-104  200-301  200-201  cissp  350-401  350-201  350-501  350-601  350-801  350-901  az-720  az-305  pl-300  

Warning: Cannot modify header information - headers already sent by (output started at /pass.php:70) in /pass.php on line 77