Each morning, a data scientist at a rental car company creates insights about the previous day's rental car reservation demands. The company needs to automate this process by streaming the data to Amazon S3 in near real time. The solution must detect high-demand rental cars at each of the company's locations. The solution also must create a visualization dashboard that automatically refreshes with the most recent data.
Which solution will meet these requirements with the LEAST development time?
The solution that will meet the requirements with the least development time is to use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3, detect high-demand outliers by using Amazon QuickSight ML Insights, and visualize the data in QuickSight. This solution does not require any custom development or ML domain expertise, as it leverages the built-in features of QuickSight ML Insights to automatically run anomaly detection and generate insights on the streaming data. QuickSight ML Insights can also create a visualization dashboard that automatically refreshes with the most recent data, and allows the data scientist to explore the outliers and their key drivers.References:
2: Detecting outliers with ML-powered anomaly detection - Amazon QuickSight
3: Real-time Outlier Detection Over Streaming Data - IEEE Xplore
4: Towards a deep learning-based outlier detection ... - Journal of Big Data
Currently there are no comments in this discussion, be the first to comment!