Deal of The Day! Hurry Up, Grab the Special Discount - Save 25% - Ends In 00:00:00 Coupon code: SAVE25
Welcome to Pass4Success

- Free Preparation Discussions

Amazon Exam MLA-C01 Topic 1 Question 3 Discussion

Actual exam question for Amazon's MLA-C01 exam
Question #: 3
Topic #: 1
[All MLA-C01 Questions]

Case study

An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.

The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.

After the data is aggregated, the ML engineer must implement a solution to automatically detect anomalies in the data and to visualize the result.

Which solution will meet these requirements?

Show Suggested Answer Hide Answer
Suggested Answer: C

Contribute your Thoughts:

Ma
4 days ago
I think option C is the way to go. Amazon SageMaker Data Wrangler has all the tools to handle the data preprocessing and anomaly detection, plus the visualization capabilities to get the job done.
upvoted 0 times
...

Save Cancel
az-700  pass4success  az-104  200-301  200-201  cissp  350-401  350-201  350-501  350-601  350-801  350-901  az-720  az-305  pl-300  

Warning: Cannot modify header information - headers already sent by (output started at /pass.php:70) in /pass.php on line 77